A valve is a device that controls the flow of a fluid or gas. A valve is a product rarely noticed by the average person, yet it plays an important role. Each time you turn on a faucet, use your dishwasher, turn on a gas stove, or step on the accelerator of your car, you operate a valve. Without modern valve systems, there would be no fresh pure water or automatic heat in your home. One of the mostly widely observed but least recognized type of valve is the fire hydrant. They are specialized underground valves that can be opened and closed from ground level when needed in emergency situations. Today’s valves can control not only the flow, but the rate, the volume, the pressure or the direction of liquids, gases, slurries or dry materials through a pipeline or similar passageway. They can turn on and turn off, regulate, modulate or isolate. They can range in size from a fraction of an inch to as large as 30 feet in diameter and can vary in complexity from a simple brass valve to a precision-designed control valve made of an exotic metal alloy. Valves can control flow of all types, from the thinnest gas to highly corrosive chemicals, steam, abrasive slurries, toxic gases and radioactive materials. They can handle temperatures from cryogenic to molten metal, and pressures from high vacuum to thousands of pounds per square inch.
Mechanical polishing is accomplished using aluminum oxide abrasives on rotary equipment. Mill finishes, welds and surfaces that have been in service have differing surface characteristics when viewed under magnification. Mechanical polishing reduces all surface ridges, pits and discrepancies to a uniform roughness. Mechanical polishing can be achieved by hand held tools for large surface areas, such as reactors and vessels in place, or by automatic reciprocating machines for pipe or tubular components. A series of grit polishes is applied in a successively finer sequence until the desired finish or surface roughness is achieved. Electropolishing is the electrochemical removal of microscopic irregularities from metal surfaces. It results in a general leveling or smoothing of the surface, that when viewed under magnification, appears virtually featureless. Stainless steel has a natural resistance to corrosion due to its high chromium content. Electropolishing enhances this natural resistance because the process dissolves more iron than chromium. This leaves higher levels of chromium on the stainless steel surface.
It depends on the application. Many valve applications in pharmaceutical and biotechnology manufacturing require forged valves because of the low ferrite content and better surface finish. Cast valves can sometimes have surface imperfections where bacteria can grow and cause contamination. Forged valves are also denser than cast. If rouging (a reddish deposit associated with corrosion of metal) is a possible problem, then forged valves should be considered.
Cast valves are produced utilizing the “lost wax” method. A wax impression is created for the shape required. The wax impression is then covered with a ceramic material and fired in a kiln. The wax evaporates during the firing process leaving behind a hard ceramic mold into which molten material is poured. Machining is minimal. Ferrite content may vary depending on wall thickness and metallurgy of the material, but is generally higher in cast valves. Forged valves are produced from round stock which has been processed from an ingot. The round stock is compressed between two halves of a forging tool at very high temperatures. The result is a shape which is then machined to create the valve shape. Forged valves require more machining than cast valves. However, forged valves have a lower ferrite content and better surface finish than cast valves.
Cv is defined as the number of US gallons per minute, of ambient temperature water that will flow through a valve 1 psi pressure drop. Cv basically gives an idea of flow when the valve is open. Cv is important to know when sizing the proper valve to a valve system. Cv is also important to pressure drops. Gangye measures the Cv of its valves in a flow loop, which gives a very accurate Cv factor. Gangye also verifies the Cv values through calculations. By controlling the surface finish to reduce cracks and crevices, the Cv of a valve can be improved.
Adjust-O-Seal design feature allows in-line adjustment to compensate for normal wear on seats, reducing downtime, maintenance and repair costs, thus increasing the time between seat replacements. The adjustment can usually be done several times before the seats have to be replaced. The adjustment is accomplished by slightly tightening the body bolts, which compresses the seats against the ball and restores the valve to a leak tight condition. The valve seats are always compressed against the ball which keeps process media out of the body chamber surrounding the ball. This seal also creates a double chamber . One chamber is inboard of the seats, and the other chamber is outboard of the seats. In the closed position, the double Chamber allows CIP/SIP flow to enter into purge ports through the body while process media is completely shut off at the upstream seat.
OEM order is wamly welcomed in Gangye and we have lots of successful experiences in doing OEM projects.
There is no min. qty limit, even one pc of valve order we can also do according to your needs and satisfy you.